50 W DC-DC Dual Output Converter

Application	Device	Power Output	Input Voltage	Output Voltage	Topology
Telecom	DPA425R	50 W	$36-75 \mathrm{VDC}$	$5 \mathrm{~V}, 3.3 \mathrm{~V}$	Forward Sync. Rect.

Design Highlights

- High efficiency: 90% at 36 VDC using synchronous rectification
- Dual output with tight cross-regulation $\pm 4 \%$ from zero to full load on both outputs
- Output overload, open loop and thermal protection
- 300 kHz switching frequency to allow sufficient transformer reset time with sync rectification
- $3.85 \times 2.25 \times 0.6$ inch ($\sim 9.62 \mathrm{~W} / \mathrm{in}^{3}$)

Operation

DPA-Switch greatly simplifies the design compared to a discrete implementation. This design uses a coupled output inductor and synchronous rectification to achieve excellent cross-regulation and high efficiency.

Resistor R1 programs the under/over voltages and linearly reduces the maximum duty cycle with input voltage to prevent core saturation during load transients. Components D1, D2, C9 and L 2 implement a resonant clamp circuit to catch and recirculate the transformer leakage energy during normal operation, with Zener VR1 providing absolute clamping for transient conditions.

Capacitor C21 charges the gate of Q2, the forward synchronous rectifier MOSFET of the 5 V output. Resistor R21 limits gate oscillation and R22 provides gate pull-down. Zener diode VR20 limits the Q2 gate voltage during conduction and also reverse charges C21 during the Q2 off time. The same drive technique is used for the forward synchronous rectifier MOSFET (Q4) of the 3.3 V output (with C22, R24, R25, and VR21).

MOSFETs Q1 and Q3 are driven via resistors R23 and R26 from the transformer (T1) reset voltage and operate only when Q2 and Q4 are off. Diodes D20 and D21 provide a conduction path for the output inductor (L4) current when the transformer reset is complete.

A winding on the coupled inductor L4, along with diode D4 and capacitor C9, provide the DPA-Switch bias voltage.

Figure 1. 50 W, 5 V, 6 A and 3.3 V, 6 A DC-DC Converter.

Key Design Points

- Capacitors $\mathrm{C} 20, \mathrm{C}_{\mathrm{Q1gs}}$ and $\mathrm{C}_{\text {Q3gs }}$ will all load transformer reset. Choose values to ensure sufficient reset at low line and safe maximum drain voltage at high line. Also use 300 kHz operation for longest reset time.
- Capacitors C21 and C22 will capacitively drive MOSFET gate capacitances $\mathrm{C}_{\text {Q2gs }}$ and $\mathrm{C}_{\text {Q4gs }}$ (respectively). C 21 and C22 should be chosen to ensure that gate drive voltage attains turn-on threshold of MOSFET $\left(\mathrm{Vg}_{\text {TH }}\right)$, at worst case conditions (low line for forward MOSFET).
- Reduce transformer leakage inductance by filling each winding layer across the entire width of the bobbin.
- Higher efficiency (+1\%) can be acheived by using a DPA426R and increasing R3 to reduce the internal current limit.

Figure 2. Efficiency vs. Output Power.

Transformer Parameters

Core Material	Ferroxcube P/N: EFD25-3F3, ungapped
Bobbin	10 -pin EFD25 surface mount bobbin
Winding Details	Primary: $11 \mathrm{~T}, 4 \times 28 \mathrm{AWG}$ $3.3 \mathrm{~V}: 2 \mathrm{~T}, 2 \times 4 \times 26 \mathrm{AWG}$ $5 \mathrm{~V}: 3 \mathrm{~T}, 2 \times 4 \times 26 \mathrm{AWG}$ Winding Order (pin numbers) $5 \mathrm{~V}:(6,7-8,9)$ Primary: $(1-10)$ $3.3 \mathrm{~V}:(4.5-2.3)$ Primary Inductance
$250 \mu \mathrm{H}, \pm 25 \%$ at 300 kHz	
Primary Resonant Frequency	3.8 MHz (minimum)
Leakage Inductance	$0.8 \mu \mathrm{H}$ (maximum)

Table 1. Transformer Parameters. (AWG = American Wire Gauge)

Output Inductor Parameters

Core Material	Ferroxcube P/N: EFD25-3F3, ungapped
Bobbin	$10-$ pin EFD25 surface mount bobbin
Winding Details	$5 \mathrm{~V}: 6 \mathrm{~T}, 2 \times 4 \times 26 \mathrm{AWG}$
	$3.3 \mathrm{~V}: 4 \mathrm{~T}, 2 \times 4 \times 26 \mathrm{AWG}$
	Bias: $12 \mathrm{~T}, 1 \times 30 \mathrm{~T} . \mathrm{I} . \mathrm{W}$.
Winding Order	$5 \mathrm{~V}:(9,10-7,8)$
	$3.3 \mathrm{~V}:(1,2-3,4)$
	Bias: (FL1-FL2)
Inductance	Pin $(1,2-3,4): 3.5 \mu \mathrm{H}, \pm 10 \%$ at 300 kHz

Table 2. Output Inductor Design Parameters.
(AWG $=$ American Wire Gauge, TIW = Triple Insulated Wire)

Power Integrations
5245 Hellyer Avenue
San Jose, CA 95138, USA.
Main: +1 408-414-9200
Customer Service
Phone: +1-408-414-9665
Fax: +1-408-414-9765
Email: usasales@powerint.com
On the Web
www.powerint.com

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS. The products and applications illustrated herein (transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.
The PI logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, EcoSmart, Clampless, E-Shield, Filterfuse, StackFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©2003, Power Integrations, Inc.

